Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Microbiol Spectr ; 12(2): e0278623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179917

RESUMO

Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 µM) and PstS2 (KD = 4.3 µM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.


Assuntos
Synechococcus , Fósforo/metabolismo , Especificidade por Substrato , Ecossistema , Fosfatos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo
5.
Nat Microbiol ; 8(11): 1995-2005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814070

RESUMO

Concerns exist that widespread use of antiseptic or disinfectant biocides could contribute to the emergence and spread of multidrug-resistant bacteria. To investigate this, we performed transposon-directed insertion-site sequencing (TraDIS) on the multidrug-resistant pathogen, Acinetobacter baumannii, exposed to a panel of ten structurally diverse and clinically relevant biocides. Multiple gene targets encoding cell envelope or cytoplasmic proteins involved in processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, were identified to have effects on bacterial fitness upon biocide exposure, suggesting that these compounds may have intracellular targets in addition to their known effects on the cell envelope. As cell respiration genes are required for A. baumannii fitness in biocides, we confirmed that sub-inhibitory concentrations of the biocides that dissipate membrane potential can promote A. baumannii tolerance to antibiotics that act intracellularly. Our results support the concern that residual biocides might promote antibiotic resistance in pathogenic bacteria.


Assuntos
Acinetobacter baumannii , Desinfetantes , Antibacterianos/farmacologia , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Bactérias
6.
Nucleic Acids Res ; 51(12): 6101-6119, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158230

RESUMO

Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.


Assuntos
Acinetobacter baumannii , Proteínas de Escherichia coli , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acinetobacter baumannii/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
IUCrJ ; 10(Pt 4): 420-429, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199504

RESUMO

The utility of X-ray crystal structures determined under ambient-temperature conditions is becoming increasingly recognized. Such experiments can allow protein dynamics to be characterized and are particularly well suited to challenging protein targets that may form fragile crystals that are difficult to cryo-cool. Room-temperature data collection also enables time-resolved experiments. In contrast to the high-throughput highly automated pipelines for determination of structures at cryogenic temperatures widely available at synchrotron beamlines, room-temperature methodology is less mature. Here, the current status of the fully automated ambient-temperature beamline VMXi at Diamond Light Source is described, and a highly efficient pipeline from protein sample to final multi-crystal data analysis and structure determination is shown. The capability of the pipeline is illustrated using a range of user case studies representing different challenges, and from high and lower symmetry space groups and varied crystal sizes. It is also demonstrated that very rapid structure determination from crystals in situ within crystallization plates is now routine with minimal user intervention.


Assuntos
Proteínas , Síncrotrons , Cristalografia por Raios X , Temperatura , Proteínas/química , Transição de Fase
8.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37252766

RESUMO

Genes encoding a novel multidrug efflux pump, AadT, from the Drug:H+ antiporter 2 family, were discovered in Acinetobacter multidrug resistance plasmids. Here, we profiled the antimicrobial resistance potential, and examined the distribution of these genes. aadT homologs were found in many Acinetobacter and other Gram-negative species and were typically adjacent to novel variants of adeAB(C), which encodes a major tripartite efflux pump in Acinetobacter. The AadT pump decreased bacterial susceptibility to at least eight diverse antimicrobials, including antibiotics (erythromycin and tetracycline), biocides (chlorhexidine), and dyes (ethidium bromide and DAPI) and was able to mediate ethidium transport. These results show that AadT is a multidrug efflux pump in the Acinetobacter resistance arsenal and may cooperate with variants of AdeAB(C).


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Antibacterianos/farmacologia , Proteínas de Membrana Transportadoras/genética , Farmacorresistência Bacteriana Múltipla/genética , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
9.
ISME J ; 17(7): 1040-1051, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087502

RESUMO

Despite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools. To understand the function of the PhnDCE transport system and its ecological consequences, we characterised the PhnD1 binding proteins from four distinct marine Synechococcus isolates (CC9311, CC9605, MITS9220, and WH8102). We show the Synechococcus PhnD1 proteins selectively bind phosphorus compounds with a stronger affinity for phosphite than for phosphate or methyl phosphonate. However, based on our comprehensive ligand screening and growth experiments showing Synechococcus strains WH8102 and MITS9220 cannot utilise phosphite or methylphosphonate as a sole phosphorus source, we hypothesise that the picocyanobacterial PhnDCE transporter is a constitutively expressed, medium-affinity phosphate transporter, and the measured affinity of PhnD1 to phosphite or methyl phosphonate is fortuitous. Our MITS9220_PhnD1 structure explains the comparatively lower affinity of picocyanobacterial PhnD1 for phosphate, resulting from a more limited H-bond network. We propose two possible physiological roles for PhnD1. First, it could function in phospholipid recycling, working together with the predicted phospholipase, TesA, and alkaline phosphatase. Second, by having multiple transporters for P (PhnDCE and Pst), picocyanobacteria could balance the need for rapid transport during transient episodes of higher P availability in the environment, with the need for efficient P utilisation in typical phosphate-deplete conditions.


Assuntos
Organofosfonatos , Fosfitos , Synechococcus , Fósforo/metabolismo , Proteínas de Transporte de Fosfato , Fosfitos/metabolismo , Synechococcus/metabolismo , Fosfatos/metabolismo , Proteínas de Membrana Transportadoras
10.
Artigo em Inglês | MEDLINE | ID: mdl-36763820

RESUMO

Objective: To explore paternal depression (before, during, and after pregnancy) and its association with neurodevelopmental disorders in children.Data Sources: A systematic, English-language review was conducted in PubMed, PubMed Central, MEDLINE, Web of Science, BIOSIS Previews, and SciELO. All relevant literature published from inception to March 31, 2021, was included. The MeSH terms used in the search included paternal behavior, fathers, or father-child relations in the context of depression, postpartum depression, and neurodevelopmental disorders.Data Extraction: The PICOS (Population, Intervention, Comparison, Outcomes, and Study design) tool was used to enhance reporting of the findings. Twenty-six articles were included in the review.Results: Paternal depression during the perinatal period resembles maternal perinatal depression. Early paternal depression has considerable emotional, behavioral, and developmental impacts on their children. Genetic endowment and environmental factors induced by paternal depression-related behaviors may lead to adverse neurodevelopmental outcomes.Conclusions and Relevance: The findings suggest that paternal depression negatively influences neurodevelopmental disorders in the offspring.


Assuntos
Depressão Pós-Parto , Transtorno Depressivo , Masculino , Gravidez , Feminino , Humanos , Depressão/epidemiologia , Fatores de Risco , Pai/psicologia , Transtorno Depressivo/psicologia
12.
Environ Microbiol ; 24(12): 6071-6085, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054310

RESUMO

Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.


Assuntos
Betaína , Synechococcus , Betaína/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Ecótipo , Filogenia , Glicina/metabolismo
13.
Sci Rep ; 12(1): 4805, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314715

RESUMO

Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 µM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 µM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.


Assuntos
Synechococcus , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Superfície Celular/metabolismo , Açúcares/metabolismo , Synechococcus/metabolismo , Zinco/metabolismo
14.
Int Psychogeriatr ; 34(2): 143-155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33757619

RESUMO

IMPORTANCE: Virtual reality (VR) is a promising tool with the potential to enhance care of cognitive and affective disorders in the aging population. VR has been implemented in clinical settings with adolescents and children; however, it has been less studied in the geriatric population. OBJECTIVE: The objective of this study is to determine the existing levels of evidence for VR use in clinical settings and identify areas where more evidence may guide translation of existing VR interventions for older adults. DESIGN AND MEASUREMENTS: We conducted a systematic review in PubMed and Web of Science in November 2019 for peer-reviewed journal articles on VR technology and its applications in older adults. We reviewed article content and extracted the number of study participants, study population, goal of the investigation, the level of evidence, and categorized articles based on the indication of the VR technology and the study population. RESULTS: The database search yielded 1554 total results, and 55 articles were included in the final synthesis. The most represented study design was cross-sectional, and the most common study population was subjects with cognitive impairment. Articles fell into three categories for VR Indication: Testing, Training, and Screening. There was a wide variety of VR environments used across studies. CONCLUSIONS: Existing evidence offers support for VR as a screening and training tool for cognitive impairment in older adults. VR-based tasks demonstrated validity comparable to some paper-based assessments of cognition, though more work is needed to refine diagnostic specificity. The variety of VR environments used shows a need for standardization before comparisons can be made across VR simulations. Future studies should address key issues such as usability, data privacy, and confidentiality. Since most literature was generated from high-income countries (HICs), it remains unclear how this may be translated to other parts of the world.


Assuntos
Disfunção Cognitiva , Realidade Virtual , Adolescente , Idoso , Cognição , Disfunção Cognitiva/diagnóstico , Estudos Transversais , Humanos , Saúde Mental
15.
Biochem Soc Trans ; 49(6): 2465-2481, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34882230

RESUMO

Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.


Assuntos
Proteínas de Transporte/metabolismo , Cianobactérias/metabolismo , Nutrientes/metabolismo , Água do Mar/microbiologia , Proteínas de Transporte/química , Metais/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Conformação Proteica , Oligoelementos/metabolismo
16.
Commun Biol ; 4(1): 1114, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552198

RESUMO

Antimicrobial resistance genes, including multidrug efflux pumps, evolved long before the ubiquitous use of antimicrobials in medicine and infection control. Multidrug efflux pumps often transport metabolites, signals and host-derived molecules in addition to antibiotics or biocides. Understanding their ancestral physiological roles could inform the development of strategies to subvert their activity. In this study, we investigated the response of Acinetobacter baumannii to polyamines, a widespread, abundant class of amino acid-derived metabolites, which led us to identify long-chain polyamines as natural substrates of the disinfectant efflux pump AmvA. Loss of amvA dramatically reduced tolerance to long-chain polyamines, and these molecules induce expression of amvA through binding to its cognate regulator AmvR. A second clinically-important efflux pump, AdeABC, also contributed to polyamine tolerance. Our results suggest that the disinfectant resistance capability that allows A. baumannii to survive in hospitals may have evolutionary origins in the transport of polyamine metabolites.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Espermidina/metabolismo , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Desinfetantes/farmacologia , Espermina/metabolismo
17.
19.
Artigo em Inglês | MEDLINE | ID: mdl-33820764

RESUMO

Fluoroquinolones are one of the most prescribed broad-spectrum antibiotics. However, their effectiveness is being compromised by high rates of resistance in clinically important organisms, including Acinetobacter baumannii We sought to investigate the transcriptomic and proteomic responses of the clinical A. baumannii strain AB5075-UW upon exposure to subinhibitory concentrations of ciprofloxacin. Our transcriptomics and proteomics analyses found that the most highly expressed genes and proteins were components of the intact prophage phiOXA. The next most highly expressed gene (and its protein product) under ciprofloxacin stress was a hypothetical gene, ABUW_0098, named here the Acinetobacterciprofloxacin tolerance (aciT) gene. Disruption of this gene resulted in higher susceptibility to ciprofloxacin, and complementation of the mutant with a cloned aciT gene restored ciprofloxacin tolerance to parental strain levels. Microscopy studies revealed that aciT is essential for filamentation during ciprofloxacin stress in A. baumannii Sequence analysis of aciT indicates the encoded protein is likely to be localized to the cell membrane. Orthologs of aciT are found widely in the genomes of species from the Moraxellaceae family and are well conserved in Acinetobacter species, suggesting an important role. With these findings taken together, this study has identified a new gene conferring tolerance to ciprofloxacin, likely by enabling filamentation in response to the antibiotic.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Proteômica
20.
Indian J Psychol Med ; 42(5 Suppl): 74S-80S, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33354069

RESUMO

Telepsychiatry and telepsychotherapy are new treatment modalities that have been used more than ever during the COVID-19 pandemic. There are many challenges that are faced with the use of this modality for both patients and psychiatrists alike. There are critical issues faced with regard to the development of rapport, managing the entire teleconsultation set up, privacy and issues related to fees, issues related to prescribing and monitoring, and issues while handling emergencies. The challenges faced are discussed and some solutions if possible are laid out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...